スペースプローブ 設計仕様書 チーム名:ナオ・キソーマ

■ミッションを達成するために現在考えている構想

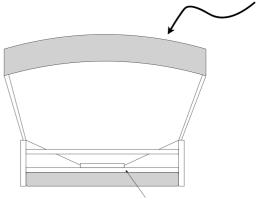
1. コンセプト

パラフォイルの紐の長さを調整し降下軌道を制御し、衝撃に備えうる機構を搭載したプローブ

コンセプト1

紐の長さを調整して降下時の軌道を制御

|コンセプト2


落下時の衝撃から機体を守るための衝撃吸収機構を備える

2. ここに注目

どれだけ安全にかつ正確に着地できるか

3.機体構成

パラシュート:パラフォイルセンサ類: GPS、9軸センサデータ保存用: SDカード制御機構:サーボモータマイコン: PICマイコン電源: 7.4v リポバッテリー

両端のサーボモータで紐を引くことで パラフォイルの操作を行い、ゴールに誘導する。

4. 想定している確認/実験 内容

4.1確認

- パラフォイルの展開が可能か
- GPSから値が取得可能であるか
- 9軸センサから値が取得可能であるか
- サーボモータの動作制御
- SDカードへのデータ転送
- SDカードからのデータの掃き出し

4.2実験

- 引く紐の長さによる機体の移動量変化の実験
- GPSおよび加速度センサによる位置補正アルゴリズムの実験
- 十分な減速に失敗した際の衝撃吸収機構の性能実験
- パラフォイルの展開実験

|5-1. 進行状況(7/10時点)

各モジュールの動作テストを行っている段階

パラフォイルの機能確認の実験を完了

パラフォイルの紐の長さを変えて機体投下し、落下軌道の違いを確認する実験を完了

制御機構に必要なモーターなどの比較検証

今後は試作機を作成し、高所からの投下実験を行う予定

衝撃吸収機構の作成と機能確認の実験も並行して行う

5-2. 進行状況 (9/3時点)

各モジュールの動作確認の終了 モーターの選定の終了 試作機の投下実験を行い、その結果からパラフォイルの改良を行った 中規模な投下実験を行い、各センサの生データ取得と制御アルゴリズムの詳細詰めを行う予定 その後、機体と制御機構を合わせた完成機で最終投下実験を行う予定

■概要	申請値	単位	補足/備考
全長(機体の長さ、実測値)	300	mm	
最大長 (突起部や畳んだパラシュートを含む、お	300	mm	
およその最大値)		1111111	
外径(機体の直径)	150	mm	
最大径 (突起部や畳んだパラシュートを含む、お	150	mm	
およその最大値)			今後の早処理数により夕小の
■量(機体・構造部、バッテリー、パラシュートなど、全搭載物の合計。実測値)	708	g	今後の最終調整により多少の 変動する可能性あり。
ロケット側への加工要望			
(「有」/「なし」を記載。ロケットの発射/プローブ開放	なし		
検出などの目的で、必要な加工があれば)	0.0		
※穴あけ程度の簡単な加工に限る 機体に限する機構	小て吐 る	→ +s/s / → /	の白もは供えれ際いして
構造に関する備考	-)(茂1本(の向きは横でお願いしま
(ロケット搭載時の注意事項など)	す。		
		1	
■減速機構について 形状			
ルルへ (半球(パラシュート)、パラフォイル、翼状など)	パラフォ	イル	
材質	ソツノス		
直径 (開いた状態での大きさ)	ポリエス 1000	mm	
降下速度 (実験·実測値、6.0m/s以上)	8	m/s	
減速機構に関する備考	現段階で		<u>. </u>
(ロケット搭載時の注意事項など)		. 10. 0.	
■電源について			
電源電圧	7.4	V	
電源容量(バッテリーの仕様、電池の公称値など)	2000	mAh	
待機時の消費電流			
(待機可能時間算出用。最大消費時ではなく、待機	15	mΑ	
している状態を計測)			
待機可能時間 (ロケットに搭載後、打上げまでの	4.0.0		予想時間
待機可能な時間。	100	h	
実測値、あるいは予想最短時間)			
搭載機器に関する備考			
(上記以外の特記事項、ロケット搭載時の注意事項 など)			
■無線機器について			

設計仕様書_公立はこだて未来大学.xlsx - 記入例(スペースプローブ 設計仕様書)

無線機器の使用(「有」/「なし」を記載)	なし	•	
※「有」の場合は以降を記載すること			
無線機器の種別			
(Bluetooth/Xbee/Twe-lite/Wifiなど)			
電波の周波数帯			
(430MHz、920MHz、2.4GHzなど)			
使用するチャンネル (チャンネルが無い場合は		ch	
″−″を記入)		CII	